Record ID | marc_loc_updates/v36.i10.records.utf8:15151524:3883 |
Source | Library of Congress |
Download Link | /show-records/marc_loc_updates/v36.i10.records.utf8:15151524:3883?format=raw |
LEADER: 03883cam a22002894a 4500
001 2002025487
003 DLC
005 20080310131625.0
008 020228s2002 maua b 001 0 eng
010 $a 2002025487
020 $a1402070314 (alk. paper)
040 $aDLC$cDLC$dDLC
042 $apcc
050 00 $aTK5102.5$b.M638 2002
082 00 $a621.382/2$221
100 1 $aMohan, P. V. Ananda,$d1949-
245 10 $aResidue number systems :$balgorithms and architectures /$cP.V. Ananda Mohan.
260 $aBoston :$bKluwer Academic Publishers,$cc2002.
300 $axiii, 254 p. :$bill. ;$c25 cm.
440 4 $aThe Kluwer international series in engineering and computer science
504 $aIncludes bibliographical references and index.
505 8 $aMachine generated contents note: 1 INTRODUCTION -- 1.1 Historical survey -- 1.2 Basic definitions of RNS -- 1.3 Addition operation in RNS -- 1.4 Conclusion --2 FORWARD AND REVERSE CONVERTERS -- FOR GENERAL MODULI SET --2.1 Introduction -- 2.2 Mixed Radix Conversion based techniques -- 2.3 CRT based conversion techniques -- 2.4 Binary to RNS conversion techniques -- 2.5 Conclusion --3 FORWARD AND REVERSE CONVERTERS -- FOR GENERAL MODULI SET {2k-l,2k,2k+1} --3.1 Introduction -- 3.2 Forward conversion architectures -- 3.3 Reverse converters for the moduli set {2k-1, 2k, 2+l} -- 3.4 Forward and Reverse converters for the moduli set{2k, 2k-l, -- 2 k- -1} -- 3.5 Forward and reverse converters for the moduli sets {2n+l, -- 2n, 2n-1} -- 3.6 Conclusion --4 MULTIPLIERS FOR RNS --4.1 Introduction -- 4.2 Multipliers based on index calculus --4.3 Quarter square multipliers -- 4.4 Taylor's multipliers -- 4.5 Multipliers with in-built scaling -- 4.6 Razavi and Battelini architectures using periodic properties -- of residues -- 4.7 Hiasat's Modulo multipliers -- 4.8 Elleithy and Bayoumi modulo multiplication technique -- 4.9 Brickell's algorithm based multipliers and -- extensions -- 4.10 Stouraitis et al architectures for (A.X + B) mod mi -- realization -- 4.11 Multiplication using Redundant Number system -- 4.12 Conclusion --5 BASE EXTENSION, SCALING AND -- DIVISION TECHNIQUES --5.1 Introduction -- 5.2 Base extension and scaling techniques -- 5.3 Division in residue number systems -- 5.4 Scaling in the Moduli set {2n-1, 2n, 2'+1} -- 5.5 Conclusion --6 ERROR DETECTION AND CORRECTION -- IN RNS --6.1 Introduction -- 6.2 Szabo and Tanaka technique for Error detection and -- Correction -- 6.3 Mendelbaum's Error correction technique -- 6.4 Jenkins's Error correction techniques -- 6.5 Ramachandran's Error correction technique -- 6.6 Su and Lo unified technique for scaling and error -- correction --6.7 Orto et al technique for error correction and detection using -- only one redundant modulus -- 6.8 Conclusion --7 QUADRATIC RESIDUE NUMBER SYSTEMS --7.1 Introduction -- 7.2 Basic operations in QRNS -- 7.3 Modified quadratic residue number systems -- 7.4 Jenkins and Krogmeier implementations -- 7.5 Taylor's single modulus ALU for QRNS -- 7.6 Conclusion --8 APPLICATIONS OF RESIDUE NUMBER -- SYSTEMS --8.1 Introduction -- 8.2 Digital Analog Converters -- 8.3 FIR Filters -- 8.4 Recursive RNS filter implementation. -- 8.5 Digital frequency synthesis using RNS -- 8.6 Multiple Valued Logic Based RNS designs. -- 8.7 Paliouras and Stouraitis architectures using moduli of the -- form r -- 8.8 Taheri, Jullien and Miller technique of High-speed -- computation in rings using systolic Architectures -- 8.9 RNS based implementation of FFT structures -- 8.10 Optimum Symmetric Residue Number System -- 8.11 Conclusion.
650 0 $aSignal processing$xDigital techniques.
650 0 $aAlgorithms.
650 0 $aComputer architecture.
856 41 $3Table of contents$uhttp://www.loc.gov/catdir/toc/fy031/2002025487.html
856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0821/2002025487-d.html