Record ID | marc_loc_updates/v39.i10.records.utf8:4137434:2258 |
Source | Library of Congress |
Download Link | /show-records/marc_loc_updates/v39.i10.records.utf8:4137434:2258?format=raw |
LEADER: 02258nam a22005297a 4500
001 2008939461
003 DLC
005 20110307075832.0
008 081015s2009 nyu b 001 0 eng d
010 $a 2008939461
015 $aGBA8B1643$2bnb
015 $a014-76008$2bnb
015 $aGBA-8B164$2bnb
015 $a08,N42,0565$2dnb
016 7 $a014760082$2Uk
020 $a9780387848983 (pbk.)
020 $a0387848983 (pbk.)
020 $a9780387848990
020 $a0387848991
028 52 $a12246229
035 $a(OCoLC)ocn258078817
040 $aUKM$beng$cUKM$dYDXCP$dBWX$dOHX$dOCLCQ$dCDX$dBTCTA$dVRC$dAUW$dGBVCP$dDEBBG$dOCL$dGA0$dDLC
042 $alccopycat
050 00 $aQA927$b.L495 2009
082 04 $a530.124$222
084 $a510$2sdnb
084 $aSK 540$2rvk
084 $aSK 620$2rvk
084 $aSK 810$2rvk
100 1 $aLinares, Felipe.
245 10 $aIntroduction to nonlinear dispersive equations /$cFelipe Linares, Gustavo Ponce.
260 $aNew York :$bSpringer,$cc2009.
300 $axi, 256 p. ;$c24 cm.
490 0 $aUniversitext
504 $aIncludes bibliographical references (p. 239-253) and index.
505 0 $a1. The Fourier transform -- 2. Interpolation of operators: a multiplier theorem -- 3. Sobolev spaces and pseudo-differential operators -- 4. The linear Schrodinger equation -- 5. The nonlinear Schrodinger equation: local theory -- 6. Asymptotic behavior for NLS equation -- 7. Korteweg-de Vries equation -- 8. Asymptotic behavior for k-gKdV equations -- 9. Other nonlinear dispersive models -- 10. General quasilinear Schrodinger equation.
650 0 $aNonlinear wave equations.
650 0 $aDifferential equations, Partial.
650 6 $aÉquations d'onde non linéaires.
650 6 $aÉquations différentielles non linéaires.
650 6 $aDispersion (Mathématiques)
650 6 $aSchrödinger, Équation de.
650 6 $aKorteweg-de Vries, Équation de.
650 07 $aNichtlineare partielle Differentialgleichung.$2swd
650 07 $aWellengleichung.$2swd
700 1 $aPonce, Gustavo.
856 41 $3Table of contents$uhttp://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016991763&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA