It looks like you're offline.
Open Library logo
additional options menu

MARC Record from Marygrove College

Record ID marc_marygrove/marygrovecollegelibrary.full.D20191108.T213022.internetarchive2nd_REPACK.mrc:183381404:3103
Source Marygrove College
Download Link /show-records/marc_marygrove/marygrovecollegelibrary.full.D20191108.T213022.internetarchive2nd_REPACK.mrc:183381404:3103?format=raw

LEADER: 03103cam a2200469Mi 4500
001 ocn469374619
003 OCoLC
005 20191109071804.3
008 021203s2002 enka f 001 0 eng d
010 $a 2001037644
040 $aBDF$bfre$encafnor$cBDF$dCNMBL$dCNMON$dOCLCO$dOCLCF$dOCLCQ$dOCLCO$dU9S$dOCLCQ$dERR
016 7 $aFRBNF388242760000004$2FrPBN
019 $a424073957
020 $a0521797071$q(br)
020 $a9780521797078$q(br)
029 0 $aBDF$bFRBNF388242760000004
029 1 $aZWZ$b146387678
035 $a(OCoLC)469374619$z(OCoLC)424073957
050 14 $aQA37.3$b.G37 2002
082 04 $a530.15$222
082 04 $a510$222
049 $aMAIN
100 1 $aGarrity, Thomas A.,$d1959- ...$4aut$0(FrPBN)14439591
245 10 $aAll the mathematics you missed :$bbut need to know for graduate school /$cThomas A. Garrity.
260 $aCambridge ;$aNew York :$bCambridge University Press,$c2002.
300 $aXXVII-347 p. :$bill. ;$c24 cm
336 $atexte$btxt$2rdacontent/fre
337 $asans médiation$bn$2rdamedia/fre
500 $aNotes bibliogr. Bibliogr. p. [329]-337. Index.
505 0 $aLinear algebra -- e and d real analysis -- Calculus for vector-valued functions -- Point set topology -- Classical stokes' theorems -- Differential forms and Stokes' thm. -- Curvature for curves and surfaces -- Geometry -- Complex analysis -- Countability and the axiom of choice -- Algebra -- Lebesgue integration -- Fourier analysis -- Differential equations -- Combinatorics and probability theory -- Algorithms -- A. Equivalence relations.$gmglib
520 0 $aBeginning graduate students in mathematics and other quantitative subjects are expected to have a daunting breadth of mathematical knowledge. But few have such a background. This book will help students to see the broad outline of mathematics and to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential geometry, real analysis, point-set topology, probability, complex analysis, abstract algebra, and more. An annotated bibliography then offers a guide to further reading and to more rigorous foundations. This book will be an essential resource for advanced undergraduate and beginning graduate students in mathematics, the physical sciences, engineering, computer science, statistics, and economics who need to quickly learn some serious mathematics.
590 $bInternet Archive - 2
590 $bInternet Archive 2
650 0 $aMathematics.
650 6 $aMathématiques.
650 7 $aMathematics.$2fast$0(OCoLC)fst01012163
650 7 $aMathématiques.$2ram$0(FrPBN)11932434
650 7 $aPhysique mathématique.$2ram$0(FrPBN)13163010
856 42 $3Notice et cote du catalogue de la Bibliothèque nationale de France$uhttp://catalogue.bnf.fr/ark:/12148/cb388242761
886 1 $2intermrc$a009$baa-d---s------a----
994 $a92$bERR
976 $a31927000604436