Record ID | marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run05.mrc:184965853:3956 |
Source | marc_openlibraries_sanfranciscopubliclibrary |
Download Link | /show-records/marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run05.mrc:184965853:3956?format=raw |
LEADER: 03956cam a2200517Ii 4500
001 884616897
003 OCoLC
005 20151005130449.0
008 140725s2014 gw a b 001 0 eng d
019 $a891555030
020 $a9783662442043 (acid-free paper)
020 $a3662442043 (acid-free paper)
035 $a884616897
035 $a(OCoLC)884616897$z(OCoLC)891555030
040 $aYDXCP$beng$cYDXCP$dBTCTA$dOCLCQ$erda$dIQU$dCDX$dTXI$dOCLCF$dIQU$dSFR$dUtOrBLW
049 $aSFRA
050 4 $aQA36$b.A36 2014
082 04 $a510.0$b23
092 $a510$bAi33p 2014
100 1 $aAigner, Martin,$d1942-
245 10 $aProofs from the book /$cMartin Aigner, Günter M. Ziegler ; including illustrations by Karl H. Hofmann.
250 $aFifth edition.
264 1 $aBerlin, Germany :$bSpringer,$c[2014]
300 $aviii, 308 pages :$billustrations (some color) ;$c25 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
504 $aIncludes bibliographical references and index.
505 0 $aNumber theory: Six proofs of the infinity of primes ; Bertrand's postulate ; Binomial coefficients are (almost) never powers ; Representing numbers as sums of two squares ; The law of quadratic reciprocity ; Every finite division ring is a field ; The spectral theorem and Hadamard's determinant problem ; Some irrational numbers ; Three times [pi squared]/6 -- Geometry: Hilbert's third problem : decomposing polyhedra ; Lines in the plane and decompositions of graphs ; The slope problem ; Three applications of Euler's formula ; Cauchy's rigidity theorem ; The Borromean rings don't exist ; Touching simplices ; Every large point set has an obtuse angle ; Borsuk's conjecture -- Analysis: Sets, functions, and the continuum hypothesis ; In praise of inequalities ; The fundamental theorem of algebra ; One square and an odd number of triangles ; A theorem of Pólya on polynomials ; On a lemma of Littlewood and Offord ; Cotangent and the Herglotz trick ; Buffon's needle problem -- Combinatorics: Pigeon-hole and double counting ; Tiling rectangles ; Three famous theorems on finite sets ; Shuffling cards ; Lattice paths and determinants ; Cayley's formula for the number of trees ; Identities versus bijections ; The finite Kakeya problem ; Completing Latin squares -- Graph theory: The Dinitz problem ; Permanents and the power of entropy ; Five-coloring plane graphs ; How to guard a museum ; Turán's graph theorem ; Communicating without errors ; The chromatic number of Kneser graphs ; Of friends and politicians ; Probability makes counting (sometimes) easy.
520 $aThe mathematical heroes of this book are 'perfect proofs': brilliant ideas, clever connections & wonderful observations that bring new insight & surprising perspectives on basic & challenging problems from number theory, geometry, analysis, combinatorics & graph theory. 30 examples are presented.
650 0 $aMathematics.
700 1 $aZiegler, Günter M.
907 $a.b29947546$b12-20-18$c05-01-15
998 $axbt$b07-20-15$cm$da $e-$feng$ggw $h0$i0
957 00 $aOCLC reclamation of 2017-18
907 $a.b29947546$b08-14-15$c05-01-15
938 $aBaker and Taylor$bBTCP$nBK0015335765
938 $aYBP Library Services$bYANK$n12001082
938 $aCoutts Information Services$bCOUT$n28668107
956 $aPre-reclamation 001 value: ocn884616897
980 $a0715 aw emd
998 $axbt$b07-20-15$cm$da$e-$feng$ggw $h0$i0
994 $aC0$bSFR
999 $yMARS
945 $a510$bAi33p 2014$d - - $e03-18-2017 14:55$f0$g0$h07-02-17$i31223112588133$j291$0800$k - - $lxbtci$nMissing as of 2018-06-29$o-$p$60.00$q-$r-$sm $t0$u7$v10$w0$x0$y.i82661662$z08-07-15
945 $a510$bAi33p 2014$d - - $e - - $f0$g0$h06-06-17$i31223112588067$j503$0501$k - - $lxbtci$nMissing as of 2018-06-29$o-$p$60.00$q-$r-$sm $t0$u9$v4$w0$x0$y.i82661674$z08-07-15