Record ID | marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run05.mrc:298782346:3813 |
Source | marc_openlibraries_sanfranciscopubliclibrary |
Download Link | /show-records/marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run05.mrc:298782346:3813?format=raw |
LEADER: 03813cam a22005778i 4500
001 909025870
003 OCoLC
005 20160816091245.0
008 150512s2016 nyua b 001 0 eng
010 $a2015018981
019 $a948772736
020 $a9781107101920$q(hardback : alk. paper)
020 $a1107101921$q(hardback : alk. paper)
020 $a9781107499430$q(pbk. : alk. paper)
020 $a1107499437$q(pbk. : alk. paper)
035 $a909025870
035 $a(OCoLC)909025870$z(OCoLC)948772736
037 $bCambridge Univ Pr, 100 Brook Hill Dr, West Nyack, NY, USA, 10994-2133, (845)3537500$nSAN 281-3769
040 $aDLC$beng$erda$cDLC$dYDXCP$dBDX$dBTCTA$dOCLCF$dTMK$dGZU$dPIT$dGZM$dABG$dGZN$dSFR$dUtOrBLW
042 $apcc
049 $aSFRA
050 00 $aQA246$b.M49 2016
082 00 $a512.7/3$223
092 $a512.73$bM4584p
100 1 $aMazur, Barry,$eauthor.
245 10 $aPrime numbers and the Riemann hypothesis /$cBarry Mazur, Harvard University, Cambridge, MA, USA, William Stein, University of Washington, Seattle, WA, USA.
264 1 $aNew York, NY :$bCambridge University Press,$c2016.
300 $axi, 142 pages :$billustrations (some color) ;$c23 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
504 $aIncludes bibliographical references (pages 129-139) and index.
505 0 $aThe Riemann Hypothesis. Thoughts about numbers ; What are prime numbers? ; "Named" prime numbers ; Sieves ; Questions about primes ; Further questions about primes ; How many primes are there? ; Prime numbers viewed from a distance ; Pure and applied mathematics ; A probabilistic first guess ; What is a "good approximation" ; Square root error and random walks ; What is Riemann's Hypothesis ; The mystery moves to the error term ; Cesàro smoothing ; A view of Li(X) - [pi](X) ; The prime number theorem ; The staircase of primes ; Tinkering with the staircase of primes ; Computer music files and prime numbers ; The word "spectrum" ; Spectra and trigonometric sums ; The spectrum and the staircase of primes ; To our readers of Part I -- Distributions. Slopes of graphs that have no slopes ; Distributions ; Fourier Transforms : second visit ; Fourier Transform of delta ; Trigonometric series ; A sneak preview of Part III --- The Riemann Spectrum of prime numbers. On losing no information ; From primes to the Riemann Spectrum ; How many [theta][subscript i]'s are there? ; Further questions about the Riemann Spectrum ; From the Riemann Spectrum to primes -- Back to Riemann. Building [pi](X) from the Spectrum ; As Riemann envisioned it ; Companions to the zeta function.
650 0 $aRiemann hypothesis.
650 0 $aNumbers, Prime.
700 1 $aStein, William A.,$d1974-$eauthor.
907 $a.b32074086$b12-21-18$c03-03-16
998 $axbt$b07-13-16$cm$da $e-$feng$gnyu$h0$i3
957 00 $aOCLC reclamation of 2017-18
907 $a.b32074086$b08-11-16$c03-03-16
938 $aBrodart$bBROD$n113342187
938 $aBaker and Taylor$bBTCP$nBK0017664157
938 $aYBP Library Services$bYANK$n12468663
938 $aYBP Library Services$bYANK$n12468638
956 $aPre-reclamation 001 value: ocn909025870
980 $a0716 sh
998 $axbt$b07-13-16$cm$da$e-$feng$gnyu$h0$i0
994 $aC0$bSFR
999 $yMARS
945 $a512.73$bM4584p$d - - $e10-06-2018 16:27$f0$g0$h12-08-18$i31223116623670$j261$0261$k - - $lxbtci$mFri Dec 21 2018 03:06PM: IN TRANSIT from precirc to xbtci$o-$p$25.00$q-$r-$st $t1$u12$v18$w1$x5$y.i87159156$z08-11-16
945 $a512.73$bM4584p$d - - $e11-04-2017 13:24$f0$g0$h01-16-18$i31223116623662$j261$0261$k - - $lxbtci$nMissing as of 2018-06-29$o-$p$25.00$q-$r-$sm $t1$u6$v19$w0$x2$y.i87159144$z08-11-16