Record ID | marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run06.mrc:64668118:3376 |
Source | marc_openlibraries_sanfranciscopubliclibrary |
Download Link | /show-records/marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run06.mrc:64668118:3376?format=raw |
LEADER: 03376cam a2200505Ii 4500
001 ocn966394369
003 OCoLC
005 20180123025210.0
008 161216s2017 caua 001 0 eng d
019 $a966609024
020 $a1491974567
020 $a9781491974568
035 $a(OCoLC)966394369$z(OCoLC)966609024
037 $bOreilly & Associates Inc, C/O Ingram Pub Services 1 Ingram Blvd, LA Vergne, TN, USA, 37086$nSAN 631-8673
040 $aYDX$beng$cYDX$dBDX$dBTCTA$dGK8$dSFR
049 $aSFRA
082 04 $a004.33$223
092 $a004.33$bL1498d
100 1 $aLakshmanan, Valliappa,$eauthor.
245 10 $aData science on the Google cloud platform :$bimplementing end-to-end real-time data pipelines: from ingest to machine learning /$cValliappa Lakshmanan.
250 $aFirst edition.
264 1 $aSebastopol, CA :$bO'Reilly Media,$c2018.
300 $axiv, 393 pages :$billustrations ;$c24 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
500 $aIncludes index.
520 $aLearn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You'll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines
610 20 $aGoogle (Firm)
630 00 $aGoogle Apps.
650 0 $aReal-time data processing.
650 0 $aCloud computing.
650 0 $aComputing platforms.
907 $a.b34600073$b12-13-18$c10-25-17
998 $axbt$b01-23-18$cm$da $e-$feng$gcau$h0$i0
907 $a.b34600073$b02-13-18$c10-25-17
938 $aBrodart$bBROD$n118843850
938 $aYBP Library Services$bYANK$n13302777
938 $aBaker and Taylor$bBTCP$nBK0019997159
980 $a0118 dj
998 $axbt$b01-23-18$cm$da$e-$feng$gcau$h0$i0
994 $aC0$bSFR
999 $yMARS
945 $a004.33$bL1498d$d12-15-2018 17:56$e - - $f0$g0$h11-27-18$i31223125835174$j503$0151$k01-05-19$lxbtci$o-$p$0.00$q-$r-$s- $t1$u6$v5$w3$x3$y.i9337124x$z01-25-18
945 $a004.33$bL1498d$d11-19-2018 17:16$e08-27-2018 16:06$f0$g0$h11-16-18$i31223129617883$j503$0501$k01-18-19$lxbtci$mIR00:11-19-18 requested by .p19382704@9alam for pickup at "Albany"$o-$p$64.99$q-$r-$s@ $t1$u4$v4$w2$x2$y.i93587168$z02-12-18