An edition of The physics of microdroplets (2012)

The physics of microdroplets

  • 0 Ratings
  • 1 Want to read
  • 0 Currently reading
  • 0 Have read
Not in Library

My Reading Lists:

Create a new list

Check-In

×Close
Add an optional check-in date. Check-in dates are used to track yearly reading goals.
Today

  • 0 Ratings
  • 1 Want to read
  • 0 Currently reading
  • 0 Have read

Buy this book

Last edited by ImportBot
October 4, 2021 | History
An edition of The physics of microdroplets (2012)

The physics of microdroplets

  • 0 Ratings
  • 1 Want to read
  • 0 Currently reading
  • 0 Have read

"This book aims to give the reader the theoretical and numerical tools to understand, explain, calculate and predict the often non intuitive, observed behaviour of droplets in microsystems. After a chapter dedicated to the general theory of wetting, the book successively. Presents the theory of 3D liquid interfaces, gives the formulas for volume and surface of sessile and pancake droplets, analyses the behaviour of sessile droplets, analyses the behaviour of droplets between tapered plates and in wedges, presents the behaviour of droplets in microchannels investigates the effect of capillarity with the analysis of capillary rise, treats the onset of spontaneous capillary flow in open microfluidic systems, analyses the interaction between droplets, like engulfment, presents the theory and application of electrowetting"--

Publish Date
Language
English

Buy this book

Edition Availability
Cover of: The physics of microdroplets
The physics of microdroplets
2012, John Wiley & Sons, Inc, Scrivener Publishing LLC
in English

Add another edition?

Book Details


Table of Contents

Machine generated contents note: Preface xviii Acknowledgements xxi Introduction 1 1. Fundamentals of Capillarity 5 1.1 Abstract 5 1.2 Interfaces and Surface Tension 5 1.3 Laplace's Law and Applications 12 1.4 Measuring the Surface Tension of Liquids 49 1.5 Minimization of the Surface Energy 61 1.6 References 62 2. Minimal Energy and Stability Rubrics 67 2.1 Abstract 67 2.2 Spherical Shapes as Energy Minimizers 68 2.3 Symmetrization and the Rouloids 73 2.4 Increasing Pressure and Stability 77 2.5 The Double-Bubble Instability 81 2.6 Conclusion 84 2.7 References 84 3. Droplets: Shape, Surface and Volume 85 3.1 Abstract 85 3.2 The Shape of Micro-drops 86 3.3 Electric Bonds Number 87 3.4 Shape, Surface Area and Volume of Sessile Droplets 87 3.5 Conclusion 105 3.6 References 105 4. Sessile Droplets 107 4.1 Abstract 107 4.2 Droplet Self-motion Under the Effect of a Contrast or Gradient of Wettability 107 4.3 Contact Angle Hysteresis 114 4.4 Pinning and Canthotaris 117 4.5 Sessile Droplet on a Non-ideally Planar Surface 124 4.6 Droplet on Textured or Patterned Substrates 125 4.7 References 142 5. Droplets Between Two Non-parallel Planes: from Tapered Planes to Wedges 145 5.1 Abstract 145 5.2 Droplet Self-motion Between Two Non-parallel Planes 145 5.3 Droplet in a Corner 154 5.4 Conclusion 160 5.5 References 161 6. Microdrops in Microchannels and Microchambers 163 6.1 Abstract 163 6.2 Droplets in Micro-wells 163 6.3 Droplets in Microchannels 168 6.4 Conclusion 180 6.5 References 181 7. Capillary Effects: Capillary Rise, Capillary Pumping, and Capillary Valve 185 7.1 Abstract 185 7.2 Capillary Rise 185 7.3 Capillary Pumping 198 7.4 Capillary Valves 205 7.5 Conclusions 209 7.6 References 210 8. Open Microfluidics 213 8.1 Abstract 213 8.2 Droplet Pierced by a Wire 214 8.3 Liquid Spreading Between Solid Structures
Spontaneous Capillary Flow 218 8.4 Liquid Wetting Fibers 241 8.5 Conclusions 250 8.6 References 250 8.7 Appendix: Calculation of the Laplace Pressure for a Droplet on a Horizontal Cylindrical Wire 251 9. Droplets, particles and Interfaces 253 9.1 Abstract 253 9.2 Neumann's Construction for liquid Droplets 253 9.3 The Difference Between Liquid Droplets and Rigid Spheres at an Interface 254 9.4 Liquid Droplet Deposited at a Liquid Surface 256 9.5 Immiscible Droplets in Contact and Engulfment 261 9.6 Non-deformable (Rigid) Sphere at an Interface 265 9.7 Droplet Evaporation and Capillary Assembly 278 9.8 Conclusion 291 9.9 References 292 10. Digital Microfluidics 295 10.1 Introduction 295 10.2 Electrowetting and EWOD 295 10.3 Droplet Manipulation with EWOD 306 10.4 Examples of EWOD in Biotechnology
Cell Manipulation 335 10.5 Examples of Electrowetting for Optics-Tunable Lenses and Electro fluidic Display 337 10.6 Conclusion 338 10.7 References 339 11. Capillary Self-assembly for 3D Microelectronics 343 11.1 Abstract 343 11.2 Ideal Case: Total Pinning on the Chip and Pad Edges 344 11.3 Real Case: Spreading and Wetting 355 11.4 The Importance of Pinning and Confinement 358 11.5 Conclusion 359 11.6 Appendix A: Shift Energy and Restoring Force 360 11.7 Appendix B: Twist Energy and Restoring Torque 362 11.8 Appendix C: Lift Energy and Restoring Force 364 11.9 References 365 12. Epilogue 369 Index 369.

Edition Notes

Includes bibliographical references and index.

Published in
Hoboken, New Jersey, Salem, Massachusetts

Classifications

Dewey Decimal Class
532/.05
Library of Congress
QC156 .B47 2012, QC156.B47 2012

The Physical Object

Pagination
pages cm

ID Numbers

Open Library
OL25264051M
ISBN 13
9780470938805
LCCN
2011052320

Community Reviews (0)

Feedback?
No community reviews have been submitted for this work.

Lists

This work does not appear on any lists.

History

Download catalog record: RDF / JSON
October 4, 2021 Edited by ImportBot import existing book
September 25, 2020 Edited by MARC Bot import existing book
April 4, 2012 Created by LC Bot import new book