Check nearby libraries
Buy this book
This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps.
The text examines the maps’ positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today’s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout.
Check nearby libraries
Buy this book
Previews available in: English
Showing 2 featured editions. View all 2 editions?
Edition | Availability |
---|---|
1 |
zzzz
Libraries near you:
WorldCat
|
2
Positive Linear Maps of Operator Algebras
2013, Springer Berlin Heidelberg, Imprint: Springer
electronic resource /
in English
3642343694 9783642343698
|
aaaa
Libraries near you:
WorldCat
|
Book Details
Table of Contents
Edition Notes
Classifications
The Physical Object
ID Numbers
Community Reviews (0)
Feedback?December 25, 2021 | Edited by ImportBot | import existing book |
July 6, 2019 | Created by MARC Bot | import new book |