Statistical methods for drug safety

Locate

My Reading Lists:

Create a new list

Check-In

×Close
Add an optional check-in date. Check-in dates are used to track yearly reading goals.
Today


Buy this book

Last edited by ImportBot
April 11, 2023 | History

Statistical methods for drug safety

This work doesn't have a description yet. Can you add one?

Publish Date
Language
English
Pages
288

Buy this book

Edition Availability
Cover of: Statistical methods for drug safety
Statistical methods for drug safety
2016, CRC Press, Taylor & Francis Group, CRC Press, Chapman and Hall/CRC
in English

Add another edition?

Book Details


Table of Contents

Machine generated contents note: 1.Introduction
1.1.Randomized Clinical Trials
1.2.Observational Studies
1.3.The Problem of Multiple Comparisons
1.4.The Evolution of Available Data Streams
1.5.The Hierarchy of Scientific Evidence
1.6.Statistical Significance
1.7.Summary
2.Basic Statistical Concepts
2.1.Introduction
2.2.Relative Risk
2.3.Odds Ratio
2.4.Statistical Power
2.5.Maximum Likelihood Estimation
2.5.1.Example with a Closed Form Solution
2.5.2.Example without a Closed Form Solution
2.5.3.Bayesian Statistics
2.5.4.Example
2.6.Non-linear Regression Models
2.7.Causal Inference
2.7.1.Counterfactuals
2.7.2.Average Treatment Effect
3.Multi-level Models
3.1.Introduction
3.2.Issues Inherent in Longitudinal Data
3.2.1.Heterogeneity
3.2.2.Missing Data
3.2.3.Irregularly Spaced Measurement Occasions
3.3.Historical Background
Note continued: 3.4.Statistical Models for the Analysis of Longitudinal and/or Clustered Data
3.4.1.Mixed-effects Regression Models
3.4.1.1.Random Intercept Model
3.4.1.2.Random Intercept and Trend Model
3.4.2.Matrix Formulation
3.4.3.Generalized Estimating Equation Models
3.4.4.Models for Categorical Outcomes
4.Causal Inference
4.1.Introduction
4.2.Propensity Score Matching
4.2.1.Illustration
4.2.2.Discussion
4.3.Marginal Structural Models
4.3.1.Illustration
4.3.2.Discussion
4.4.Instrumental Variables
4.4.1.Illustration
4.5.Differential Effects
5.Analysis of Spontaneous Reports
5.1.Introduction
5.2.Proportional Reporting Ratio
5.2.1.Discussion
5.3.Bayesian Confidence Propagation Neural Network (BCPNN)
5.4.Empirical Bayes Screening
5.5.Multi-item Gamma Poisson Shrinker
5.6.Bayesian Lasso Logistic Regression
5.7.Random-effect Poisson Regression
5.7.1.Rate Multiplier
5.8.Discussion
Note continued: 6.Meta-analysis
6.1.Introduction
6.2.Fixed-effect Meta-analysis
6.2.1.Correlation Coefficient
6.2.2.Mean Difference
6.2.3.Relative Risk
6.2.3.1.Inverse Variance Method
6.2.3.2.Mantel-Haenszel Method
6.2.4.Odds Ratio
6.2.4.1.Inverse Variance Method
6.2.4.2.Mantel-Haenszel Method
6.2.4.3.Peto Method
6.3.Random-effect Meta-analysis
6.3.1.Sidik-Jonkman Estimator of Heterogeneity
6.3.2.DerSimonian-Kacker Estimator of Heterogeneity
6.3.3.REML Estimator of Heterogeneity
6.3.4.Improved PM Estimator of Heterogeneity
6.3.5.Example
6.3.6.Issues with the Weighted Average in Meta-analysis
6.4.Maximum Marginal Likelihood/Empirical Bayes Method
6.4.1.Example: Percutaneous Coronary Intervention Based Strategy versus Medical Treatment Strategy
6.5.Bayesian Meta-analysis
6.5.1.WinBugs Example
6.6.Confidence Distribution Framework for Meta-analysis
6.6.1.The Framework
6.6.1.1.Fixed-effects Model
Note continued: 6.6.1.2.Random-effects Model
6.6.2.Meta-analysis of Rare Events under the CD Framework
6.7.Discussion
7.Ecological Methods
7.1.Introduction
7.2.Time Series Methods
7.2.1.Generalized Event Count Model
7.2.2.Tests of Serial Correlation
7.2.3.Parameter-driven Generalized Linear Model
7.2.4.Autoregressive Model
7.3.State Space Model
7.4.Change-point Analysis
7.4.1.The u-chart
7.4.2.Estimation of a Change-point
7.4.3.Change-point Estimator for the INAR(1) Model
7.4.3.1.Change-point Estimator for the Rate Parameter
7.4.3.2.Change-point Estimator for the Dependence Parameter
7.4.4.Change-point of a Poisson Rate Parameter with Linear Trend Disturbance
7.4.5.Change-point of a Poisson Rate Parameter with Level and Linear Trend Disturbance
7.4.6.Discussion
7.5.Mixed-effects Poisson Regression Model
8.Discrete-time Survival Models
8.1.Introduction
8.2.Discrete-time Ordinal Regression Model
Note continued: 8.3.Discrete-time Ordinal Regression Frailty Model
8.4.Illustration
8.5.Competing Risk Models
8.5.1.Multinomial Regression Model
8.5.2.Mixed-Effects Multinomial Regression Model
8.6.Illustration
8.6.1.Model Parameterization
8.6.2.Results
8.6.3.Discussion
9.Research Synthesis
9.1.Introduction
9.2.Three-level Mixed-effects Regression Models
9.2.1.Three-level Linear Mixed Model
9.2.1.1.Illustration: Efficacy of Antidepressants
9.2.2.Three-level Non-linear Mixed Model
9.2.3.Three-level Logistic Regression Model for Dichotomous Outcomes
9.2.3.1.Illustration: Safety of Antidepressants
10.Analysis of Medical Claims Data
10.1.Introduction
10.2.Administrative Claims
10.3.Observational Data
10.4.Experimental Strategies
10.4.1.Case-control Studies
10.4.2.Cohort Studies
10.4.3.Within-subject Designs
10.4.3.1.Self-controlled Case Series
10.4.4.Between-subject Designs
Note continued: 10.5.Statistical Strategies
10.5.1.Fixed-effects Logistic and Poisson Regression
10.5.2.Mixed-effects Logistic and Poisson Regression
10.5.3.Sequential Testing
10.5.4.Discrete-time Survival Models
10.5.5.Stratified Cox Model
10.5.6.Between and Within Models
10.5.7.Fixed-effect versus Random-effect Models
10.6.Illustrations
10.6.1.Antiepileptic Drugs and Suicide
10.6.2.Description of the Data, Cohort, and Key Design and Outcome Variables
10.6.3.Statistical Methods
10.6.4.Between-subject Analyses
10.6.5.Within-subject Analysis
10.6.6.Discrete-time Analysis
10.6.7.Propensity Score Matching
10.6.8.Self-controlled Case Series and Poisson Hybrid Models
10.6.9.Marginal Structural Models
10.6.10.Stratified Cox and Random-effect Survival Models
10.6.11.Conclusion
10.7.Conclusion
11.Methods to be Avoided
11.1.Introduction
11.2.Spontaneous Reports
11.3.Vote Counting
Note continued: 11.4.Simple Pooling of Studies
11.5.Including Randomized and Non-randomized Trials in Meta-analysis
11.6.Multiple Comparisons and Biased Reporting of Results
11.7.Immortality Time Bias
12.Summary and Conclusions
12.1.Final Thoughts.

Edition Notes

"A Chapman & Hall book."

Includes bibliographical references (page 255-273) and index.

Published in
Boca Raton, FL
Series
Chapman & Hall/CRC biostatistics series, Chapman & Hall/CRC biostatistics series (Unnumbered)

Classifications

Dewey Decimal Class
615.7/042
Library of Congress
RM302.5 .G53 2016, RM302.5, R729.8 .G53 2015

The Physical Object

Pagination
xix, 288 pages
Number of pages
288

Edition Identifiers

Open Library
OL30856661M
ISBN 10
146656184X
ISBN 13
9781466561847
LCCN
2015458340
OCLC/WorldCat
922542090, 915134684

Work Identifiers

Work ID
OL22949321W

Community Reviews (0)

No community reviews have been submitted for this work.

Lists

This work does not appear on any lists.

History

Download catalog record: RDF / JSON
April 11, 2023 Edited by ImportBot import existing book
December 16, 2022 Edited by MARC Bot import existing book
September 18, 2021 Edited by ImportBot import existing book
November 4, 2020 Created by MARC Bot import new book