Check nearby libraries
Buy this book
"The question addressed in this monograph is the relationship between the time-reversible Newton dynamics for a system of particles interacting via elastic collisions, and the irreversible Boltzmann dynamics which gives a statistical description of the collision mechanism. Two types of elastic collisions are considered: hard spheres, and compactly supported potentials. Following the steps suggested by Lanford in 1974, we describe the transition from Newton to Boltzmann by proving a rigorous convergence result in short time, as the number of particles tends to infinity and their size simultaneously goes to zero, in the Boltzmann-Grad scaling. Boltzmann's kinetic theory rests on the assumption that particle independence is propagated by the dynamics. This assumption is central to the issue of appearance of irreversibility. For finite numbers of particles, correlations are generated by collisions. The convergence proof establishes that for initially independent configurations, independence is statistically recovered in the limit. This book is intended for mathematicians working in the fields of partial differential equations and mathematical physics, and is accessible to graduate students with a background in analysis." --
Check nearby libraries
Buy this book
Showing 1 featured edition. View all 1 editions?
Edition | Availability |
---|---|
1
From Newton to Boltzmann: hard spheres and short-range potentials
2013, European Mathematical Society
in English
3037191295 9783037191293
|
aaaa
Libraries near you:
WorldCat
|
Book Details
Edition Notes
Includes bibliographical references (pages [130]-132) and indexes.
Classifications
The Physical Object
ID Numbers
Community Reviews (0)
Feedback?December 10, 2022 | Edited by MARC Bot | import existing book |
December 7, 2022 | Edited by MARC Bot | import existing book |
November 14, 2020 | Created by MARC Bot | import new book |