High-level, part-based features for fine-grained visual categorization

High-level, part-based features for fine-grai ...
Thomas Berg, Thomas Berg
Locate

My Reading Lists:

Create a new list

Check-In

×Close
Add an optional check-in date. Check-in dates are used to track yearly reading goals.
Today


Buy this book

Last edited by MARC Bot
December 20, 2022 | History

High-level, part-based features for fine-grained visual categorization

Object recognition--"What is in this image?"--is one of the basic problems of computer vision. Most work in this area has been on finding basic-level object categories such as plant, car, and bird, but recently there has been an increasing amount of work in fine-grained visual categorization, in which the task is to recognize subcategories of a basic-level category, such as blue jay and bluebird. Experimental psychology has found that while basic-level categories are distinguished by the presence or absence of parts (a bird has a beak but car does not), subcategories are more often distinguished by the characteristics of their parts (a starling has a narrow, yellow beak while a cardinal has a wide, red beak). In this thesis we tackle fine-grained visual categorization, guided by this observation. We develop alignment procedures that let us compare corresponding parts, build classifiers tailored to finding the interclass differences at each part, and then combine the per-part classifiers to build subcategory classifiers.

Using this approach, we outperform previous work in several fine-grained categorization settings: bird species identification, face recognition, and face attribute classification. In addition, the construction of subcategory classifiers from part classifiers allows us to automatically determine which parts are most relevant when distinguishing between any two subcategories. We can use this to generate illustrations of the differences between subcategories. To demonstrate this, we have built a digital field guide to North American birds which includes automatically generated images highlighting the key differences between visually similar species. This guide, "Birdsnap," also identifies bird species in users' uploaded photos using our subcategory classifiers. We have released Birdsnap as a web site and iPhone application.

Publish Date
Language
English

Buy this book

Book Details


Edition Notes

Department: Computer Science.

Thesis advisor: Peter N. Belhumeur.

Thesis (Ph.D.)--Columbia University, 2017.

Published in
[New York, N.Y.?]

The Physical Object

Pagination
1 online resource.

ID Numbers

Open Library
OL44577208M
OCLC/WorldCat
982310694

Source records

marc_columbia MARC record

Community Reviews (0)

Feedback?
No community reviews have been submitted for this work.

Lists

This work does not appear on any lists.

History

Download catalog record: RDF / JSON
December 20, 2022 Created by MARC Bot import new book