Check nearby libraries
Buy this book
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
Check nearby libraries
Buy this book
Previews available in: English
Subjects
Embeddings (Mathematics), Graph theory, Mappings (Mathematics), Surfaces, Combinatorics & graph theory, Geometry - Algebraic, Mathematics, Science/Mathematics, Mathematical Analysis, Discrete Mathematics, Galois theory, Mathematics / Topology, Vassiliev invariants, embedded graphs, matrix integrals, moduli of curves, General, Graphic methods, Geometry, analytic, Algorithms, Algebraic Geometry, Combinatorial analysis, Topology, Geometry, algebraic, Differential equations, partial, Several Complex Variables and Analytic Spaces, Mathematical and Computational Physics TheoreticalEdition | Availability |
---|---|
1 |
zzzz
|
2 |
zzzz
|
3
Graphs on Surfaces and Their Applications
2006, Springer London, Limited
in English
3540383611 9783540383611
|
aaaa
|
4
Graphs on Surfaces and Their Applications
February 12, 2004, Springer
Hardcover
in English
- 1 edition
3540002030 9783540002031
|
zzzz
|
5 |
zzzz
|
Community Reviews (0)
Feedback?History
- Created October 4, 2021
- 1 revision
Wikipedia citation
×CloseCopy and paste this code into your Wikipedia page. Need help?
October 4, 2021 | Created by ImportBot | Imported from Better World Books record |