Check nearby libraries
Buy this book
Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction and can serve as a bridge to more advanced treatises on nonlinear and convex programming. The emphasis on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes graduate students in applied mathematics, computational biology, computer science, economics, and physics as well as upper division undergraduate majors in mathematics who want to see rigorous mathematics combined with real applications. Chapter 1 reviews classical methods for the exact solution of optimization problems.
Chapters 2 and 3 summarize relevant concepts from mathematical analysis. Chapter 4 presents the Karush-Kuhn-Tucker conditions for optimal points in constrained nonlinear programming. Chapter 5 discusses convexity and its implications in optimization. Chapters 6 and 7 introduce the MM and the EM algorithms widely used in statistics. Chapters 8 and 9 discuss Newton’s method and its offshoots, quasi-Newton algorithms and the method of conjugate gradients. Chapter 10 summarizes convergence results, and Chapter 11 briefly surveys convex programming, duality, and Dykstra’s algorithm. Kenneth Lange is the Rosenfeld Professor of Computational Genetics in the Departments of Biomathematics and Human Genetics at the UCLA School of Medicine. He is also Interim Chair of the Department of Human Genetics. At various times during his career, he has held appointments at the University of New Hampshire, MIT, Harvard, the University of Michigan, and the University of Helsinki.
While at the University of Michigan, he was the Pharmacia & Upjohn Foundation Professor of Biostatistics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, and applied stochastic processes. Springer-Verlag previously published his books Mathematical and Statistical Methods for Genetic Analysis, Second Edition, Numerical Analysis for Statisticians, and Applied Probability.
Check nearby libraries
Buy this book
Previews available in: English
Edition | Availability |
---|---|
1 |
zzzz
|
2 |
zzzz
|
3 |
zzzz
|
4 |
aaaa
|
5
Optimization
2013, Springer New York, Imprint: Springer
electronic resource /
in English
- 2nd ed. 2013.
1461458382 9781461458388
|
zzzz
|
Book Details
Classifications
The Physical Object
Edition Identifiers
Work Identifiers
Work Description
Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications. In this second edition, the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions.
Community Reviews (0)
History
- Created February 27, 2022
- 2 revisions
Wikipedia citation
×CloseCopy and paste this code into your Wikipedia page. Need help?
September 28, 2024 | Edited by MARC Bot | import existing book |
February 27, 2022 | Created by ImportBot | Imported from Better World Books record |