Check nearby libraries
Buy this book
The study of dynamic equations on a measure chain (time scale) goes back to its founder S. Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on measure chains can build bridges between continuous and discrete mathematics. Further, the study of measure chain theory has led to several important applications, e.g., in the study of insect population models, neural networks, heat transfer, and epidemic models. Key features of the book: * Introduction to measure chain theory; discussion of its usefulness in allowing for the simultaneous development of differential equations and difference equations without having to repeat analogous proofs * Many classical formulas or procedures for differential and difference equations cast in a new light * New analogues of many of the "special functions" studied * Examination of the properties of the "exponential function" on time scales, which can be defined and investigated using a particularly simple linear equation * Additional topics covered: self-adjoint equations, linear systems, higher order equations, dynamic inequalities, and symplectic dynamic systems * Clear, motivated exposition, beginning with preliminaries and progressing to more sophisticated text * Ample examples and exercises throughout the book * Solutions to selected problems Requiring only a first semester of calculus and linear algebra, Dynamic Equations on Time Scales may be considered as an interesting approach to differential equations via exposure to continuous and discrete analysis. This approach provides an early encounter with many applications in such areas as biology, physics, and engineering. Parts of the book may be used in a special topics seminar at the senior undergraduate or beginning graduate levels. Finally, the work may
Check nearby libraries
Buy this book
Previews available in: English
Edition | Availability |
---|---|
1
Dynamic Equations on Time Scales: An Introduction with Applications
2012, Birkhauser Verlag
in English
1461202019 9781461202011
|
zzzz
|
2
Dynamic Equations on Time Scales
Oct 23, 2012, Birkhäuser, Springer
paperback
1461266599 9781461266594
|
zzzz
|
3
Dynamic Equations on Time Scales: An Introduction with Applications
Nov 03, 2011, Birkhäuser
paperback
1461202027 9781461202028
|
zzzz
|
4
Dynamic Equations on Time Scales: An Introduction with Applications
June 15, 2001, Birkhäuser Boston
Hardcover
in English
- 1 edition
0817642250 9780817642259
|
aaaa
|
Book Details
First Sentence
"A time scale (which is a special case of a measure chain, see Chapter 8) is an arbitrary nonempty closed subset of the real numbers."
Classifications
The Physical Object
ID Numbers
Community Reviews (0)
Feedback?History
- Created April 29, 2008
- 10 revisions
Wikipedia citation
×CloseCopy and paste this code into your Wikipedia page. Need help?
November 14, 2023 | Edited by MARC Bot | import existing book |
October 4, 2021 | Edited by ImportBot | import existing book |
December 3, 2020 | Edited by MARC Bot | import existing book |
June 29, 2019 | Edited by MARC Bot | import existing book |
April 29, 2008 | Created by an anonymous user | Imported from amazon.com record |